CURVA DE VALORACIÓN DE pH DE UNA MEZCLA DE SOSA CARBONATADA (NaoH+Na₂CO₃) (con programa con registrador de datos)

Objetivo/s

Realizar un curva de valoración que sirva de análisis químico de solución muestra de una mezcla de hidróxido sódico NaOH y carbonato sódico Na₂CO₃ mediante una titulación con una solución de valorante de ácido clorhídrico HCI (de concentración conocida), realizada por un sensor de pH conectado a un programa en el ordenador que recoge los datos en tablas y gráficas.

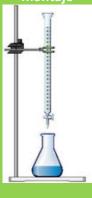
Material

Ordenador con sensor de pH conectado a un programa en el ordenador que recoja registro de datos en tablas y gráfica (tipo DataStudio, Pasco Capstone), erlenmeyer de 250 cm³, pipeta aforada de 10 ml, bureta de 50 cm³.

Muestra mezcla de solución de hidróxido sódico NaOH y de carbonato sódico Na₂CO₃ 0,10 M, solución valorante de ácido clorhídrico HCl 0,10 M)

- Llenar la bureta de solución valorante de ácido clorhídrico HCl 0,10 M) (si es posible previamente calibrado o factorizado)..
- 2) Pipetea 10 ml de solución muestra de solución muestra de hidróxido sódico NaOH de 0,10 y carbonato sódico Na₂CO₃. Echar su contenido al Erlenmeyer de 250 ml.
- **3)** Introducir ahora dentro del Erlenmeyer el sensor de pH conectado a un programa en el ordenador (ejemplo tipo Pasco Capstone). Al estar todo encendido se abrirán las tablas y gráficas en la pantalla, en el que tiene que marcar pH = 13.

NOTA.- una solución de NaOH 0,1 M corresponde a una $[OH^-] = 10^{-1}$, y $[H^+] = 10^{-13}$ y pH = 13


4) Abrir la llave y se deja caer 0,50 ml de la solución valorante de HCl. Se agita a la la mecla del erlenmeyer (con mucho cuidado ya que tenemos el sensor de pH). La reacciónes que van teniendo lugar:

NaOH (aq) + HCl (aq) ------→ NaCl (aq) + H₂O Hasta primer punto de inflexión

5) Ese será el primer punto de la gráfica **pH** (ordenadas) y **ml HCl añadido** (abcísas). Se sigue añadiendo otro medio ml de ácido y tendremos el segundo punto. Así sucesivamente hasta completar la curva. Además de la reacción anterior, las reacciones que van a tener lugar y el tipo de curva serán:

 Na_2CO_3 (aq) + HCl (aq) ------- \rightarrow NaHCO₃ (aq) + H₂O Hasta primer punto de inflexión NaHCO₃ (aq) + HCl (aq) ------- \rightarrow H₂CO₃ (aq) + H₂O Hasta segundo punto de inflexión

Procedimiento y montaje

TABLA DE DATOS BRUTOS

Volumen de solución HCl 0,10 M ± ml	pH ±	Volumen de solución HCl 0,10 M ± ml	рН ±
0,5		7,5	
1,0		8,0	
1,5		8,5	
2,0		9,0	
2,5		9,5	
3,0		10,0	
3,5		10,5	
4,0		11,0	
4,5		11,5	
5,0		12,0	
5,5		12,5	
6,0		13,0	·
6,5		13,5	
7,0		14,0	

ANÁLISIS DE DATOS

REPRESENTACIÓN DE DATOS

Representar la gráfica **pH = f(ml HCl añadido).** pH (ordenadas) y ml HCl añadido (abcísas)